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We have investigated the stochastic dynamics of a one dimensional rotor with C; symmetry and zero
barrier to rotation about the symmetry axis. Angular momentum correlation functions derived from
various stochastic dynamics models were compared to the corresponding correlation functions obtained
from a molecular dynamics simulation [G. Widmalm, R. W. Pastor, and T. E. Bull, J. Chem. Phys. 94,
4097 (1991)]. None of the existing classical models agrees with the simulation; and we have shown in
general that no linearly coupled generalized Langevin equation with Gaussian random noise can repro-
duce the simulation results. A quantum stochastic dynamics model [T. E. Bull, Chem. Phys. 143, 381
(1990)] extrapolated to the classical limit does, however, agree with the computer simulations. But this
model is limited to very small molecules because the matrices involved become prohibitively large for
even moderately sized molecules. In order to address some of these limitations, we have constructed a
nonlinearly coupled rotor-bath model for the rotor. The form of the nonlinear coupling between the ro-
tor and bath is determined by the symmetry of the rotor. A classical nonlinearly coupled generalized
Langevin equation and its corresponding nonlinearly coupled Fokker-Planck equation were derived
from this microscopic rotor-bath model using the projection operator formalism. In the limit of white
noise, these equations reduce to the standard equations derived with linear coupling. With colored
noise, however, the linearly and nonlinearly coupled equations are distinct. Angular momentum correla-
tion functions calculated with this nonlinearly coupled Fokker-Planck equation are in excellent agree-
ment with the simulations both in terms of the short time Gaussian decay and long time exponential tail
and in terms of the magnitudes of the correlation functions. Collision operators derived from this model
should therefore provide a more accurate connection between experimentally measured quantities and
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the underlying microscopic dynamics.

PACS number(s): 05.40.+j, 34.10.+x, 33.25.Bn, 82.20.Fd

I. INTRODUCTION

There is a continuum of stochastic dynamics models
which are characterized by the ratio of the mass of the
solvent hard sphere to the mass of the solute hard sphere.
At one extreme, the Fokker-Planck-Langevin (FPL) mod-
el [1,2] is essentially the dynamics of a bowling ball in a
sea of ping pong balls. The probability distribution of
momenta of the bowling ball after a collision, averaged
over the ensemble of ping pong balls, is a very narrow
Gaussian distribution about its momentum before the
collision. In the middle, the Bhatnagar-Gross-Krook
(BGK) model [3,4] is essentially the dynamics of a bil-
liard ball in a sea of billiard balls of the same mass and di-
ameter. When two balls collide they exchange their mo-
menta and energies. Thus the distribution of momenta
after a collision is unrelated to the momentum before a
collision and each collision completely randomizes the
momentum. At the other extreme, the Lorentz model [5]
is essentially the dynamics of a ping pong ball in a sea of
bowling balls. In the one dimensional version, the distri-
bution of momenta of the ping pong ball following a col-
lision is a narrow Gaussian distribution about the nega-
tive of its momentum before the collision.

These three models and all intermediate models were
unified into a continuum of models for translational
motion by Wigner and Wilkins [6,7]. Widom [8] extend-
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ed their collision kernel to rough circle models of rota-
tional relaxation. Based on Widom’s kernel and quantum
mechanical density matrix relaxation theories developed
by Redfield [9] and Hubbard [10], Bull [11] developed
quantum mechanical models which are analogous to the
classical FPL and one dimensional BGK models in the
Markovian limit. (The BGK model is the same as the ex-
tended diffusion theory [12] in this system [13].) The
quantum mechanical models will be referred to as analogs
of the classical FPL and BGK models in both the Marko-
vian and non-Markovian regimes, although the analogy is
correct only in the Markovian limit.

The fundamental difference between the models is the
way collisions change the angular momentum [13]. The
correlation functions of polynomials of the momentum in
systems with no stationary potential provide a direct
measure of the effects of these collisions. Specifically, in
the absence of collisions the angular momentum correla-
tion functions are constants, since the angular momen-
tum is constant. Conversely, the decay of the functions is
attributable solely "to the collisions and the decay
behavior can be used to characterize the effects of col-
lisions.

Since the Hermite polynomials of the angular momen-
tum are eigenvectors of the collision operator associated
with Widom’s kernel [14], these polynomials form a con-
venient basis for calculating the correlation functions. In
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particular, the normalized correlation function of the nth
rank Hermite polynomial H,(x) is defined as

_ (H,(x(1)H,(x(0)))
(H,(x(0)H,(x(0))) ’

where x =J /V/2IkgT is a dimensionless variable, J and
I are the angular momentum and moment of inertia of
the rotor, T is the temperature, and ky is Boltzmann’s
constant.

In order to investigate the various stochastic models of
rotational motion, Widmalm, Pastor, and Bull [15] per-
formed molecular dynamics simulations of a methyl
group attached to a stationary bead. The methyl group
was treated as a rigid body and its symmetry axis was
fixed. It had zero barrier to internal rotation and was im-
mersed in water. Zhang [16] has recently confirmed these
results in new molecular dynamics simulations using a
different parameter set for the atomic model of the
methyl group and water molecules.

Figure 1 shows the normalized correlation functions of
the first and second rank Hermite polynomials of the
methyl group’s angular momentum calculated from
Widmalm’s simulation [15]. Two important features are
evident in these correlation functions. First, both corre-
lation functions show a rapid Gaussian-like decay at
short times. Second, the normalized correlation function
of the second rank Hermite polynomial is larger than
that of the first rank polynomial for most times.

Also shown in Fig. 1 are the predictions of the non-
Markovian quantum stochastic dynamics analog of the
FPL model at 310 K and extrapolated to the classical

C,(1) (1.1)
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FIG. 1. The normalized correlation functions of the first
(lower curves at times ¢ >0.1 ps) and second (upper curves at
t > 0.1 ps) rank Hermite polynomials of the angular momentum
of a methyl group in water. The solid lines are the results of a
molecular dynamics simulation [15], the dotted lines are the
predictions of the stochastic quantum dynamics model at a tem-
perature T =310 K, and the dashed lines are the predictions of
the dynamics model extrapolated to the classical limit. The an-
gular momentum correlation time (area under the correlation
function of the first rank Hermite polynomial) is 7;,=0.48 ps
and the time constant for the exponential memory function (the
noise correlation time) is 7=0.079 ps. The inset shows the short
time behavior of the correlation functions.
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limit [11]. The excellent agreement between this model
and the simulation indicates that the quantum theory
contains some fundamentally correct attributes, while the
extrapolation to the classical limit shows that these attri-
butes are not primarily quantum mechanical in nature.
Furthermore, the much poorer agreement between the
quantum analog of the BGK model (not shown) and the
simulation results indicates that the FPL model is pre-
ferred for this system.

Calculations with the quantum analog of the FPL
model, however, are limited to relatively small molecules
and groups since the size of the matrices involved be-
comes prohibitively large for even moderately sized mole-
cules. It is therefore important to develop classical sto-
chastic models that reproduce the simulation results.
These models should provide a more accurate description
of the microscopic dynamics than is provided by existing
classical models and they can serve as a basis for develop-
ing collision operators that can be applied to larger
groups and molecules.

An analogous idea has been developed by Lynden-Bell
et al. [17] to improve the description of motion around
the symmetry axis of acetonitrile. Specifically, they inves-
tigated a linear Langevin equation with a threefold poten-
tial and a non-Gaussian Kubo oscillator model in order
to better reproduce certain features of time correlation
functions calculated from simulations.

In the present work, however, we generalize the FPL
model to include non-Markovian effects such as nonlocal
dissipation and colored noise. It is well known that the
stochastic dynamics equation associated with the FPL
model is a linear Langevin equation, and a linearly cou-
pled generalized Langevin equation therefore is a
straightforward generalization, i.e.,

. t .
1$(=—[" y(t—9)d(s)ds+n(1), (1.2)
where y(t) is the dissipation kernel, 7(z) is the colored
noise, and the internal potential is zero. Note that the
dissipation is a linear force [linearly proportional to the
angular velocity ¢(¢)] and the noise is additive.

It is shown in Appendix A that if the noise source in
(1.2) is Gaussian random (white or colored), then the an-
gular momentum J (¢)=1¢(z), which satisfies the linearly
coupled generalized Langevin equation with zero station-
ary potential (1.2) is also Gaussian random. By definition,
correlation functions of Gaussian random variables are
pairwise decomposable. And, as shown in Appendix B, if
the correlation functions of a variable x (¢) are pairwise
decomposable, then

C,()=[C,()]". (1.3)
Consequently, if we assume Gaussian random noise and
the validity of Eq. (1.2), then the normalized correlation
function of the second rank Hermite polynomial of the
angular momentum must be less than that of the first
rank Hermite polynomial (for ¢z > 0) since the latter is less
than 1. However, the simulation displays the opposite re-
lationship for most of the time shown. Therefore, in order
to reproduce the simulation results with a Langevin equa-
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tion, it is necessary to revise the assumptions of linear
coupling and/or Gaussian random noise.

In an attempt to improve the stochastic dynamics
model for a one dimensional threefold symmetric rotor,
we reexamined the microscopic model of the methyl
group and its interaction with solvent molecules. We
found that nonlinear coupling between the rotor and its
environment appears naturally in the transformation
from Cartesian to polar coordinates. More important,
the form of the nonlinear coupling is determined by the
symmetry properties of the rotor.

We show that the leading coupling terms for a methyl
group are a.cos3¢ and a,sin3¢, where a, and a; are func-
tions of the dynamical variables of the solvent molecules.
These correspond to the coupling terms x°, x %y, xy?, and
y3 in the Cartesian coordinate system. They are highly
nonlinear and are the same form as the coupling used in
the quantum mechanical model [11].

Using this nonlinear coupling, we propose a rotor-bath
model for a methyl group immersed in a solvent. The
solvent is modeled by an ideal thermal bath which con-
sists of two sets of harmonic oscillators with different fre-
quencies. The coupling between the rotor and bath is
linear in the bath coordinates, but nonlinear in the rotor
coordinate. At a microscopic level, this system-bath
model is standard in nonequilibrium statistical mechanics
and has been used frequently both in classical and quan-
tum mechanics [18-22].

By using the powerful projection operator method
developed by Zwanzig and others [18,19,23,24], the ir-
relevant bath variables can be eliminated systematically,
resulting in a nonlinearly coupled generalized Langevin
equation. This equation has the usual features of the
linearly coupled generalized Langevin equation: a dissi-
pative force and a noise source. However, the dissipative
force now is nonlinear and the noise is multiplicative.

A Fokker-Planck-type master equation for the phase
space probability distribution of the rotor is also derived
from the rotor-bath model. An important feature of the
master equation is that both the diffusion and dissipation
“coefficients” are no longer constants, but depend on the
angular momentum J. It is shown that this unique
feature drives the dynamics of the rotor in a fundamen-
tally different way.

In the limit of white noise, these nonlinearly coupled
equations reduce to the Langevin and Fokker-Planck
equations derived with linear coupling. With colored
noise, however, the linearly and nonlinearly coupled
equations are distinct.

In the next section the rotor-bath model is developed
and the form of the nonlinear coupling is determined
from a consideration of the rotor’s symmetry. In Sec. III
a nonlinearly coupled generalized Langevin equation is
derived. The derivation of the corresponding Fokker-
Planck-type master equation is given in Sec. IV. Correla-
tion functions calculated from solving the nonlinear mas-
ter equation are presented in Sec. V and are compared
with correlation functions derived from the simulations.
The discussion and conclusion are presented in Sec. VL
Some details of the derivations are contained in a series of
appendixes.

II. RANDOM POTENTIALS FOR A METHYL GROUP
AND ROTOR-BATH MODEL

Consider a methyl group attached to a large molecule.
The methyl group is treated as a rigid body and is im-
mersed in a solvent. Assuming the large molecule is
fixed, the methyl group can only rotate about its symme-
try axis and it is a one dimensional symmetric rotor. If
the symmetry axis of the rotor is along the z axis, the
three hydrogens of the methyl group are in the x-y plane
and their coordinates are

x,=lycosd ,

(2.1a)
y1=lgsing ,
x,=Iycos ¢+—23£ ,

(2.1b)

. 2

y,=Iysin d)'f—‘? s
x3=Igcos ¢+i37r— ,

(2.1¢)
y3=Iysin ¢+4T7T R

where ¢ is the rotational angle and [, is the distance be-
tween a hydrogen and the z axis. If v(x,y) is the random
interaction between a hydrogen in the methyl group and
all the solvent molecules, then the potential of the whole
methyl group is

V(g)=v(x,y)tv(x,,py,)tvixs,ys). (2.2

Expanding v (x,y) about the origin (x =y =0) (which is
also the center of the methyl group) and keeping terms
only up to third order in x and y, we obtain

V(¢)=V,+a,cos(3¢)+asin(3¢) , (2.3)
where
— 3 2 aZU 3 2 aZU
V0—3v(0,0)+Zloa~2—(0,0)+Zlogy—z(O,O) (2.4a)

does not exert a torque and

1,5;3% 3 B R0
=—13—(0,0)— =13 (0,0) , (2.4b)

fe™ g 053 8 *axay?

_3 v 1,5 3%
a, §’3 PR (0,0) 510*—3(0,0) (2.4c)

are two independent random variables. The random po-
tential (2.3) can also be rewritten as

V(p)=V,+a'cos3(¢—d) , (2.5)
where
a’=\/acz+as7‘ (2.6a)

is the random amplitude and
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aS
¢$o=arctan—
aC
is the random phase. It is clear that the potential ¥V (¢)
has threefold rotational symmetry, i.e., it is invariant un-
der the transformation ¢ —¢+27/3.
To mimic the above random interaction between the
rotor and bath, we introduce a rotor-bath model. The
Hamiltonian for both rotor and bath is

H(¢,J’qcakc,qs’ks)
=H(¢’J)+Hb(qc’kc’qs’ks)+Hint(¢’qc7qs) ’ 2.7)

where

(2.6b)

_r
H, (¢,J)= 2I+U(¢>) (2.8)

is the Hamiltonian of the rotor,

kZ 1
H,(q.,k.,q;,k, )= 212 —+—m,0,q2 l

. m, 2
X2 2.9)
1
+ % zn-::n Emsn w?n qszn

is the Hamiltonian of the thermal bath, and
Hint(¢’qc7qs )= 2 [Ccnqcn Ac(‘tb)} + 2 {Cansn As(¢)}
n n

(2.10)

is the interaction between the rotor and bath. In the
above equations, J is the angular momentum of the rotor,
I =3ml} is the moment of inertia of the rotor, and U (¢)
is the internal potential (barrier) of the rotor. The
thermal bath is modeled by two sets of harmonic oscilla-
tors with masses m_, and m, and natural frequencies @,
and w,,. The coordinates and canonical momenta of the
bath oscillators are gq.,, 4,,, K.,, and k. The bath is
coupled to the rotor by two nonlinear functions

A ()=1cos(39) ,
A ($)=3sin(3¢) .
The coupling constants are C,, and Cj,.

(2.10a)
(2.10b)

III. NONLINEARLY COUPLED
GENERALIZED LANGEVIN EQUATION

The equations of motion for the rotor-bath model de-
rived from the total Hamiltonian (2.7) are
v__ dU(g) 94.($)
I¢=— — C
¢ a¢ a¢ z { cn quI ]

n

9A,(¢)

_ % > {Cnen} » (3.1)
mcn .q.Cn +an w%’l q(‘ﬂ == Ccn AC(¢) ’ (3'2a)
mg, 'q.sn +msnw§n 9sn = _Csn As(¢) . (3.2b)

The formal solutions to (3.2a) and (3.2b) are
qcn(t)=g,,(0) cos(w,,t)+ & sin(w,, t)
m(‘" wcn
C sin[w,, (t —s5)
- m‘" fo’ds on ] A (4(s5)), (3.3a)

cn cn
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and
S'l( .
95, (1)=¢,,(0) cos(w,,t)+ > sin(wy, t)
Cin 1, sinfog,(t—s)]
——= [ds A(g(s),  (3.3b)
mS'l 0 sn

where ¢,,(0), g,,(0), k. (0), and k., (0) are the initial
coordinates and momenta of the bath oscillators. Substi-
tuting (3.3a) and (3.3b) into (3.1) gives

" AU (4) 0A4.(¢) . dy.(t—s)
1§=— a¢¢ —2~ [ o= 485
‘—
+———a’2c(;¢)nc(t)—za’2’;¢) fo’d;:t(_s:) A,(9(5)
9A4,(d)
+ Y 7,(8) , (3.4)
where
c?
Ye(s) =3 + cos(w,,s) , (3.5a)
n 2anwCﬂ
c?
ys(8)=3 —i;— cos(wy,s) , (3.5b)

n 2mSﬂ wsn

and

nc(t)= - E Ccn qc,,(O)cos(coc,,t)

ken(0)
+ sin(w,,1) |, (3.6a)
mCHmC'I
Ns()=— 3, C;, 145,(0) cos(wy,?)
kSﬂ(
+ sin(wg,t) t . (3.6b)
msnwsn

The functions defined in (3.5a) and (3.5b) are called
damping kernels and the functions (3.6a) and (3.6b) are
noise sources. Assuming that at time ¢ =0 the bath is at
thermal equilibrium with temperature 7, then the aver-
ages for the bath oscillators are

(q.,(0))=0,

(3.7a)
kyT
(gen(072)=—2=
mcna)cn
(k,,(0))=0,
(3.7b)
(k,(0)2)=m_kpT ;
{4, (0))=0 " . (3.70)
(g (07 =—2— ;
msnwsn
(k,,(0))=0,
3.7d)

(ky, (0*)=m kg T ;

and the averages of all other two point functions are
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(gcn(0)k,, (0)) = (qy,(0)k,(0)) =

where the average is taken over the Maxwell-Boltzmann
distribution

H,

Pp= % exp (3.8)

with Z being a normalization constant. With the above
relations it can be shown that

(n.(1))=0,
(3.9a)
(n(t)m(t,))=2kg Ty (t,—t,) ;
(n,(1))=0,
(3.9b)
<77s ns(t2 ) 2kBT7/s( ) >
and
(0 (t,)n,(2,))=0. (3.9¢)

It is clear that, under these assumptions, 7.(¢) and 7,(¢)
are two independent Gaussian noise sources.
Integrating (3.4) by parts leads to

. 90U (¢) ¢) 0A4.(¢) .
1¢= 36 Y fodsyc(t s) ) o(s)
0A4. ()
+ 26 N(1)
aA (¢ aAS(qS).
_ fdsys 2 é(s)
aAS )
¢ (1), (3.10)
9¢
where
U ()=U($)—y.(0)[ 4.()]>—y,(0) 4,(¢)]? 3.11)
is the renormalized internal potential of the rotor. Since
o)
26 = —sin(3¢) (3.12a)
and
94,(¢)
) = cos(3¢) , (3.12b)
then
aU,(¢)

3g  2sin (3¢) [ 'ds y.(t =s)sin(3¢)d(s)

—sin(3¢)7n, (¢)
—2cos(3¢)f0tds y,(t —s) cos(3¢)d(s)

+ cos(3¢)n, (¢) (3.13)

This is a nonlinearly coupled generalized Langevin equa-
tion. The noise sources 7,(t) and 7,(¢), which are multi-
plicative, are coupled to the rotor through the nonlinear
coupling functions sin(3¢) and cos(3¢). The damping

(g.,(0)g,,(0))=(k,(0

)k, (0)) = (3.7e)

—

(g, (0)k, (0)) =(q,,(0)k,(0))=0,

forces are also nonlinearly coupled and they contain two
memory functions y.(¢) and y(1).
If we define the noise spectral densities as

c?
277 . o No—w,,) (3.14a)
and
2
Zﬂ'zmsn o lo—wy,) , (3.14b)

then the dissipation kernels (3.5a) and (3.5b) can be
rewritten as

® I (0)
(s)=f4r do 1@ cos(ws) (3.15a)
0 T o
and
+odw Is(w)
= —_— . 3.15b
ys(s) fo P cos(ws) ( )

From the above definitions, it can be seen that these spec-
tral densities depend only on the properties of the bath
oscillator and the coupling between the bath and the ro-
tor. For an isotropic fluid, we naturally have

I.(w)=I1(w), (3.16)

SO

Y () =y (s)=y(s) . (3.17)
A simple example of a spectral density is Ohmic dissi-
pation

_wZ/AZ

I.(0)=7ywe , (3.18)

where A is the frequency cutoff. The damping kernel is

_ A /a2
}’(S)—}’Ome s

~y8(s) , (3.19)
where we have assumed that the cutoff frequency A is
very large. The Ohmic dissipation is a local damping
force and it corresponds to a white noise source through
the well known fluctuation-dissipation relations (3.9a) or
(3.9b). For this special case, the Langevin equation (3.13)
becomes

oU,(¢)

—sin(3¢)n () + cos(3¢)n,(¢) . (3.20)
In Appendix C, it is shown that the master equation for
the probability distribution of the rotor which corre-
sponds to (3.20) is the regular Fokker-Planck equation
(C11). This means that the master equations for linearly
and nonlinearly coupled systems are the same in the limit
of white noise and local damping. With a colored noise
spectrum, on the other hand, the damping force contains
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memory kernels and the resultant master equation is
more complicated, as shown in the next section.

IV. NONLINEARLY COUPLED GENERALIZED
FOKKER-PLANCK EQUATION FOR A FREE ROTOR

The probability distribution W(4¢,J,q,,k.,q;,k,,t) for
the rotor-bath model (2.7) satisfies the classical Liouville
equation

)
EWziH’W}pb , (4.1)
where
(8} =118}t (fr8)os T {8} 4.2)
and
¢ —0f 0g Of dg
Vo8l =34 a7 " aJ 36 (4.32)
¢ — of dg _ df og
Vel =2 |5 ok, ok, 4., (430)
s — of dg _ 9of _dg
Unel= 2 15, k., ok, o, 43

denote the Poisson brackets of the arbitrary functions f
and g. If the Liouville operator is defined as

il =if,+iL, +iL;,

(4.4)
={Hy, }pp+{Hps Jpp T (Hines Jpo
then (4.1) becomes
8 =[if,+il, +iL,, 1w 4.5)
Define the projection operator Pas[19]
Bf=p, [db f (4.6)
and its complement as
P'=1-P, 4.7
where
[ab= H [ " da, f “dk,, dqs,, ) +:dks,,
(4.8)

is the integration over the phase space of the bath and p,

is the Maxwell-Boltzmann distribution for the thermal
J
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bath (3.8). Applying the projection operation P to the

probability  distribution of the rotor bath
W(¢,J,q.,k.,q;,k,,t) results in

Pw=p,o, 4.9)
where

o(¢, ;)= [ db W($,J,q..k.,q.,k,,1) (4.10)

is the reduced probability distribution for the rotor. It
has been shown [23] that the master equation for o(¢,J,t)
is

%a(¢,],t)=§a(¢,.],t)+ﬁa(¢,J,t) , 4.11)

where § is the streaming operator

So(¢,J,0)=iL,a($,J,1)

ac;;g)(%_§%‘a(¢,1,t) 4.12)

and R is the collision operator
Ro,J,)=[" ds [dbiL;,e"~9PiLF
XiL, ppo(d,J,s) . (4.13)

Here we have assumed that at initial time t — — oo, the
rotor and the bath are not correlated, so that

W(t——w)=p,0(t—— ) (4.14)
and therefore
PW(t——w)=0 (4.15)

Assuming that the coupling between the rotor and bath is
weak, i.e., C,, and C,, are very small, then

H;,, <<H, (4.16)

and we can make the approximation

el —s)PiLP e(l‘ —s)P'(iL, +iL, )P’ i
in Eq. (4.13) or
ﬁ"(d”J”):f:wdsdeiIfime“""'fa*'fb’
XiLinpyo(¢,J,5) . (4.18)

With this approximation, Eq. (4.11) becomes (see Appen-
dix D)

%a(¢,],t)= %%—%; (g 0+2 [ dsyle—s) ajsc ;’J (it aa“;‘ fo(¢,Js)
+2f ds‘;/s(t~s) ) %e“_sm: aa¢ T a(¢,J,s)
+2kpT [* dsyc(t—s) a¢ % (=i, aa/; )
+2k,T ' ds a¢ ;’J (=L, aa: 2o(405), (4.19)
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where the dissipation kernels ¥ .(s) and y,(s) are given by (3.5a) and (3.5b) and the renormalized internal potential of

the rotor U,(¢) is defined in (3.11).

Assuming the solvent is an isotropic fluid, then (3.17) holds and Eq. (4.19) can be further simplified to

i) _|9U,(¢) 3 J o 9 (t )i, J
3,0(8:0:0) 56 3 1ag |79 42 [ dsylt =) F(g,],t =se o($,J,5)
t ) (t— s):i a
+2kp T [* dsy(t —s)5=F($,J,t —s)e o(¢,J,s) , (4.20)
- aJ
where the kernel F(¢,J,t) is
0A4.(¢p) ur 0A.(¢p) 0A(d) ur 0A(P)
F(¢,J,0)= “ + “ :
(¢,J,1) 36 e 36 2 e 36 4.21)
For a free rotor,
aU,(¢)
Y (4.22)
and, as shown in Appendix E,
F(¢,J,s)= cos 3§s (4.23)
Consequently, Eq. (4.20) reduces to the integral-differential equation
8 J J (t— s)xﬁ J
—_ ,t _—— + —_c)—— Sl —
oI 0==7 a¢0(¢Jt) 2f" _dsylt s) - cos |35(1—5) 70(8,,5)
+2k, T [ ds‘y(t——s)—éjcos %(t—s)]e” ok, a 370(8:5) (4.24)
|
which is our main result. It is easy to see that the (t =)L, (6. 7.5)~ (t =s)iL, +iR) (b.7.5)
thermal equilibrium distribution of the rotor € o($,J,5)= o($,J.s
H, =o(¢,J,t) (4.28)
Teq D)~ exp | = @25 i @.26) and
is an eigenfunction of (4.24) with zero eigenvalue, i.e., the %U(d,,_]’t):(,fa +iR )U(¢,J,t)2ijjaa(¢”]’t) (4.29)

master equation (4.24) satisfies the principle of detailed
balance.
Further, it can be shown that

(t— S)iﬁ"a((b,.],s)] ,

(4.26)

(t—s)iL (t—s)i
e

“Jo(e,J,s)=[3 "J][

where the square brackets indicate that the operators
operate only on functions within the square bracket.
Also,

(: ik, a a(¢Js

e (=)~ 0
_ngo———n! liL, ] aJa(d),J,s)

- (s R P
- § — aJ = UL 1o ,d,9)
———0 (¢,J,8)+ J o S (g0 . (4.27)

If the memory time is short, the integrands in Eq. (4.24)
are negligible except at small values of (¢ —s). Conse-
quently, one can use the approximation

in (4.27). This results in the short noise correlation time
approximations

(t—s)iL

e ‘Jo(¢,J,s)=Jo(,J,t) (4.30)

and

(t— s)tL a U(¢Js

—0(¢,J,t)+ L=Sif o(,d,1) .

(4.31)

Substituting (4.30) and (4.31) into (2.24) gives the master
equation for a free Brownian rotor,

-2+ S pigng

9 -
3t o(g,J,t)= 736

3
+kBTaJD(¢,J)aJ

kT2 D (N2 ol d,0) . (4.32)

oJ d¢

The first term on the right-hand side of (4.32) is the usual
streaming term. The second and third terms are a
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diffusion term and a dissipation term, respectively. The
last term is the abnormal diffusion term. In (4.32), the
diffusion coefficient is

© J
= - 4.
D(¢,))= [ “ds y(s)cos |3s (4.33)
and the abnormal diffusion coefficient is
® J
(¢, J)= 2 4.34
D'(¢,J) fo ds s y(s) cos 37 (4.34)

Equation (4.32) is the master equation (4.24) in the limit
of a short noise correlation time. It does not contain any
explicit time integration. Nevertheless, it is still a master
equation for a non-Markovian process; all of the non-
Markovian characteristics are contained explicitly in the
diffusion and dissipation coefficients (4.33) and (4.34). It
is easy to verify that the master equation (4.32) in the lim-
it of short noise correlation time also satisfies the princi-
ple of detailed balance.
In the white noise limit (3.19), we find that

DW=y, (4.35)

and

D'(J)=0 (4.36)

and the master equation becomes

J 9

d -
310(¢’J’t)_ &Y

J J 3?2
+‘yoa—J~I—+’)/0kBT'872“ o(d,J,t),
4.37)

which is the regular Fokker-Planck equation with zero
internal potential [see Eq. (C11)]. This limiting case of
the master equation can also be obtained by taking the
white noise limit (3.19) directly in the master equation
(4.24).

Specifically, if the damping kernel is an exponentially
decaying function, namely,

—Isl/7
’

‘y(s)=y0%e (4.38)

where 7 is the memory time ( which is also the noise
correlation time), the corresponding spectral density is

1

L(0)=I,(0)=ys— .
[o)=I(v) y°1+7'2a)2

(4.39)

In this case,

(J(J(0))= f:”d¢, [ _+:de foz”dqs,. [ _+:dJ,-oeq(¢,-,J,~ W J,G (6,0 1,t6,,d:,0) .
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_ 1
D(¢,J)=7v, 2 (4.40)
1+ 3—I-T
and
J 2
1— 377‘
D'(¢,J)='}’Ol 212 (4.41)
1+ 3%7-
and the master equation becomes
0 i J 1 J
—_ ,J,t ={———+4 —
TS I Y R LFY ;7 I
1+ |3=7
I
d 1 d
+ T— —
Yok a7 ; 237
1+ 377-
2
1— {3——1'
aZ
+
YokBTTa¢aJ 7 272
1+ 377'
Xo(,J,t) . (4.42)
When the memory time goes to zero
Y (s)—76(s) (4.43)

and Eq. (4.42) reduces to (4.37).

V. APPLICATION: ANGULAR MOMENTUM
CORRELATION FUNCTIONS

In this section, we use the master equation derived in
the preceding section to compute angular momentum
correlation functions of a free rotor. From the definition
(1.1), the correlation function of the first rank Hermite
polynomial of the angular momentum is

(J(£)J(0))

CO=77 070 °

(5.1

where

(5.2)
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In the above equation, o.,(¢,J) is the equilibrium proba-
bility distribution of the rotor (4.25) and G (¢,J,t|¢;,J;,0)
is the Green’s function that satisfies the master equation
(4.24) with the boundary condition

G($,J,0|¢,,J;,0)=8(¢—¢;)8(J —J,) . (5.3)
From the identity
gy Lt
S(dp—¢;) § 2 (5.4)
and the expansion
G (b, ,118:,0,,0)= 3 =™ 746 (1,417,0), (5.5

2T

it follows that

@I = [ "7di, [ 7 dlo (I 1Gold 1,11;,0)
(5.6)

and the angular momentum correlation function only de-
pends on the zeroth term of the full Green’s function
Go(J;,|J;,0). This zeroth term Green’s function satisfies
the equation

3 ~ IR §
5, Golustlug,00= 2[0 ds7(s)

where
ky T 1/2
I

A= |18

and the boundary condition (5.8) becomes

Go(u,0lu;,0)=8(u —u;) .

YUHONG ZHANG AND T. E. BULL

10 d
2 3u cos(Aus) 3

)
3, Gol:11J0,0)

=2fo°°ds y(s)gaj cos

3—';-s

%GO(J,tlJO,O)

+2kBTfO°°ds ‘y(s)ai‘] cos 3%s %GO(J,tIJO,O)
(5.7)
with the boundary condition
Go(J,0|J;,0)=8(J —J;) . (5.8)

It is clear from Eq. (5.7) that since the internal potential
of the rotor U,(¢) is constant, GO(J,tl.I,-,O) is decoupled
from all other terms of the full Green’s function, so there
is no contribution from the angle variable ¢. By intro-
ducing the dimensionless variable

J

The angular momentum correlation function (5.6) then can be written as

(TOIJ )Y =kyT) [ *“duy [ “du,fyup)f\(u)Goluyp,tlu;,0)

where

fn(u)anHn(u)e—(l/Z)uz

is the well known normalized eigenfunction of the (quantum) harmonic oscillator, i.e.,

L@ e =+ 1)f ()
2942 20 [T R A

u=—- (5.9
V 20k, T
and taking the transformation
~ 1
Go(J,t|74,0)=Gy(u,t|uy,0)———
0 0 0 0 Vaak,T
X exp | — il (5.10)
P\ " 4Ik,T | '
Eq. (5.7) becomes
| d ~
+ —(u?—1) cos(Aus)—u—— cos(Aus) | Gy(u,t|u,,0) ,
2 du
(5.11)
(5.12)
(5.13)
(5.14)
(5.15)
(5.16)

H,(u) is the nth rank Hermite polynomial, and N, =(2V'72"n!)"'/2 is a normalization constant. Expanding the

Green’s function G(u,t|u;,0) as

G(u,tlu;,00="3 a,, ()f,(w)f(u;)

(5.17)
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converts Eq. (5.11) into

d — _2_ © + oo
(D= 2 Ifo dsy(s)f_wduf,,(u)

—u 3 cos(Aus)
ou

and the boundary condition (5.13) becomes

a,,(0)=8,,, . (5.19)
Substituting (5.17) into (5.14) yields
(J()J(0))=TkgT)a,,(t) (5.20)

and therefore the normalized correlation function of the
first rank Hermite polynomial of the rotor is

Cl(t)=a”(t) . (5.21)

This result can be generalized to the normalized correla-
tion functions of higher rank Hermite polynomials of the
rotor, namely,
(H,(u(1))H,(u(0)))
(H,(u(0)H,(u(0)))
where u (¢) is defined in Eq. (5.9).

In the limit of a short noise correlation time, Eq. (5.11)
can be simplified to

C,(t)= =a,,(t), (5.22)

9 & Yo |18 508 1.2 115
atGo(u,tIu,-,O) T 123,05, S lu’=1]D(u)
1 3D(u) |
+2u ™ Golu,t|u;,0),
(5.23)
where
f)(u)=—l—f+°°dt y(t)cos(Aut) . (5.24)
Yo~ O

Note that in Eq. (5.23), the damping constant ¥, has been
written out explicitly, so the function D(u) is dimension-
less. Furthermore, Eq. (5.18) becomes

d

—_Y
S am(0=—" ;h,m,a,,,m(t), (5.25)

where the matrix elements are

b= [ “du f,(u)

—

_ 18 5,y0 1.2 .5
S 3, D+ [u~11D(w)

_ 1 3D(u)
4 o, Sau) . (5.26)
A. White noise limit
In the white noise limit (4.35),
D(u)=1, (5.27)

_19
2 du

cos(kus)i+ l(u 2—1)cos(Aus)
du 2

So)ay,,(s) (5.18)

=
so that

h,,=nd,, . (5.28)
As a result

_ —nlyy/Dt

ayn(t)=e 078, (5.29)
and the angular momentum correlation function is

C,(=e "7 (5.30)

B. Colored noise with short memory time

For colored noise with an exponentially decaying
correlation function (4.38), and a very short memory time
T,
~1—A7u?, (5.31)

where A is given in (5.12). To this approximation, the
matrix element (5.26) is

Ry =18, +A7*AR,,. , (5.32)
where

- (" _138 29 1 5 2
Ah,,. f_mduf,,(u) TR i)

X fulu) .

It follows from the perturbation calculation that, to
second order in 7,

(5.33)

C,(t)=exp | —(n +A**Ah,, )?t , (5.34)
where
Ah,,=—n(n—1) . (5.35)

C. Colored noise with arbitrary memory time

For a more general colored noise source, the correla-
tion functions can be calculated numerically. Taking the
Laplace transformation

@y (p)= fo“’dt e Pa,, (1) (5.36)
on both sides of (5.18) gives
_ Yo
panm(p)_anm(o)__ 2 Thnn'(p)an'm(p) ’ (5.37)

n'

where
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1 0 =~ d
h = d —_— _— 1.00
wP)= [ du f,(u) | =5 2D u,p) o
+%[u2—-l]ﬁ(u,p) 0.75
D = 0.50
—L,8Dwp) o)) (538 O
2 ou
and the kernel D(u,p) is 0.25
ﬁ(u,p)=—y2—f0°°dte“"y(t)cos(}\ut) . (5.39) 0.00 - -
0 1 1
0.0 0.5 1.0 15

The matrix element 4, (p) can be further written as
Ry (p)=3V(n +1)(n"+ D{n +1|D(p)|ln'+1)
+1Vnn (n —1|D(p)In’—1)

+{n|D(p)ln") —(1+p7){n|D*p)in’) ,

(5.40)
where
(nlDp)n)= [ “du f,(D(wp)fy(u)  (5.41a)
and
<n|ﬁ2(p)|n'>=f_+:du Folw)[D(u,p)Pflu) . (5.41b)

For an exponentially decaying noise correlation func-
tion (4.38),

1+pt
(1+p7)+A2Pu?
If 7 is small, p7 can be omitted and Eq. (5.42) reduces to
(5.23), the limit of a short noise correlation time.

Equation (5.37) can be further written in matrix form
as

D(u,p)= (5.42)

pI+ ZI(lh(p) a(p)=a(0)=1, (5.43)

where I is the identity matrix. The solution to this ma-
trix equation is
-1

a(p)= (5.44)

Y
pI+TOh(p)

The procedures for the numerical calculations are as
follows: (1) the kernel D(u,p) is computed from a given
dissipation kernel y(z); (2) the matrix elements
(n|D(p)In’) and (n|D*p)In’') are computed and, via
Eq. (5.40), the matrix h is calculated; (3) the matrix inver-
sion, Eq. (5.44), and inverse Laplace transform are taken
to give a,,(¢) and a,,(t), which are C(¢) and C,().

Figures 2—4 show a comparison of angular momentum
correlation functions calculated from the molecular dy-
namics simulation [15] and the present theory. The noise
correlation function is the exponentially decaying func-
tion (4.38). And for comparison, we chose T =310 K
and I =5.46X107*° g cm?, which are comparable to the
values used in the molecular dynamics simulation [15].

t (ps)

FIG. 2. The normalized correlation functions of the first
(lower curves at times ¢ >0.12 ps) and second (upper curves at
t >0.12 ps) rank Hermite polynomials of the angular momen-
tum of a methyl group in water. The solid lines are the results
of a molecular dynamics simulation [15]. The dashed lines are
the predictions of the nonlinearly coupled generalized Fokker-
Planck equation (4.24) with an exponential dissipation kernel,
i.e., the inverse Laplace transform of Eq. (5.44). The angular
momentum correlation time is 7;,=0.48 ps and memory time
constant is 7=0.056 ps. The inset shows the short time
behavior of the correlation functions.

There are two independent, adjustable parameters in
the present theory, namely, the noise correlation time 7
and the damping constant y,. However, for each value of
7, the value of y, was determined by requiring that the
simulation and the stochastic model produce the same
value for the angular momentum correlation time 7,
which is defined as the time integral of C,(t).
Specifically, these parameters are related by
7,=a,,(0)=h"0),,I/y,. The memory time 7 was then
varied to obtain the best fit to C,(¢) and C,(¢), simultane-
ously. As can be seen, the stochastic theory and the
simulations are in excellent agreement with 7=0.079 ps
and the simulation value of 7;,=0.48 ps. At shorter

T
1.00 1.00
0.75
£ 0.50 - N 1 R
0.10 0.15
0.25 |
0.00 .
1 1
0.0 0.5 1.0 1.5

t (ps)

FIG. 3. The same as Fig. 2 except that the memory time con-
stant is 7=0.079 ps. Note that, in this figure, the adjustable pa-
rameters have the same values as in Fig. 1.
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T T
1.00 1.00 .
0.75
0.75 b .
0.50
=050 |
[ &)
0.25 |
0.00 .
1 1
0.0 0.5 1.0 15

t (ps)

FIG. 4. The same as Fig. 2 except that the memory time con-
stant is 7=0.102 ps.

values of 7, the rotor is overdamped, while longer values
of 7 produce oscillations or the so called cage effect.

These results are virtually identical to those obtained
from the stochastic quantum dynamics model, which in-
dicates that the essential features of the latter have been
captured in the classical model.

VI. CONCLUSION

We have developed a stochastic dynamics model for a
rigid one dimensional rotor with threefold symmetry.
The derivation uses a general form of random interaction
between the rotor and the thermal bath. The intrinsic
symmetry of the rotor dictates the form of this rotor-bath
coupling, which turns out to be highly nonlinear.

From this model, the stochastic dynamics equation was
derived using the standard projection operator method.
The resultant equation has the usual damping term and
noise source. The noise may be colored and the damping
force may contain a memory function, depending on the
characteristics of the thermal bath. While the noise and
damping satisfy the well known fluctuation dissipation re-
lation, they are coupled to the dynamical variables of the
rotor through the nonlinear functions determined by the
symmetry of the rotor.

A Fokker-Planck-type master equation was also de-
rived from the same model using the same method. It is
an integral-differential equation that satisfies detailed bal-
ance and therefore is consistent with the laws of thermo-
dynamics. In the white noise limit, the master equation
reduces to the regular Fokker-Planck equation, which
suggests that the nonlinearity becomes important only for
non-Markovian processes.

This stochastic dynamics model for rotational motion
can also be viewed as the classical analog of a quantum
stochastic dynamics model developed earlier [11]. The
rotor-bath model and the form of nonlinear coupling be-
tween the rigid rotor and the bath are identical, although
the microdynamics (quantum versus classical) are
different.

The angular momentum correlation functions of a free
rotor were calculated numerically. The results were
found to be in excellent agreement with correlation func-
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tions calculated from a molecular dynamics simulation of
a methyl group attached to a large molecule immersed in
a water. The agreement with the simulation is due to two
essential features of the present theory. First, the correct
form of nonlinear coupling between the rotor and the
bath was used. This produced a normalized correlation
function of the second rank Hermite polynomial that, at
long times, is larger than the correlation function of the
first rank Hermite polynomial. Second, the master equa-
tion (4.24) was solved exactly using Laplace transforms.
This produced the proper short time behavior of the
correlation functions.

These results indicate that the nonlinearly coupled,
non-Markovian stochastic dynamics equation or master
equation and its three dimensional analogs should be
used in place of the linearly coupled generalized
Langevin equation when describing rotational relaxation.
The resultant collision operator should provide a more
accurate connection between experimentally measured
quantities and the underlying microscopic dynamics.
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APPENDIX A

The linearly coupled generalized Langevin equation of
a free Brownian particle is

Mo+ [ dsy(t—sw(s)=n(1), (A1)

where x (¢) is the (generalized) coordinate and v (¢)=x(¢)
is the (generalized) velocity. If the noise 7(¢) is Gaussian
random (colored or white) with zero mean, then

(n(1))=0 (A2a)
and the two point correlation function is
((e)n(t))=y(t,—ty), (A2b)

where the average { ) is taken over the functional proba-
bility distribution

P[T’]zNO exp _%f_-*_o:odtl f—+:dt27](t1)’}’(t1—t2)_l

Xn(t,) |, (A3)

with N, being the normalization constant. The higher
moments of a Gaussian random process are pairwise
decomposable, i.e.,
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(e m(ty)n(t3)) =0, (Ada)

(e (e m(e3)m(e,)) =it )m(e,) ) {nlt;)n(ty))

+ e )n(t3)) (nlty)n(t,))

+{n(t; (e )) (nltym(t5))
(A4b)

and so on.
It can be shown that the Fourier transform of Eq. (A1)
is

iMot(w)+ TN e)i(o)=7%w) , (A5)
with
v(a))=f_+wdte"“" eldy (1) (A6a)
Plw)= [ " “dre=ioreiy () (A6b)
Aw)= [ " “dr i ey (A6c)
and
r +todo ilo'—w) _, ,
(0)=7% w)+2f 7 ('), (A7)

© 2T (@'—@)*+e

where € is an infinitesimal positive number that is intro-
duced to guarantee that the integrals in (A6a)-(A6c) con-
verge. Further, from (A5),

SN (w)
b(w) iMo+T(w) (A8)

is a linear mapping from 7j(w) to ¥(w) in the frequency
domain. With this linear mapping, it can be shown that
the two point correlation function of v (¢) is

(v(tl)v(t2)>=G(t1_t2), (A9)
where
= todw o 1
G) f—w 277'e iMo+T(w)
1
x -
2k TT ) ot T (=) (A10)
and

2k, TY(0)=(7(0)7j( —)) (A11)

J

(H iy (O )%, (pO) = [ 772
o

do, —01/2f+°° dUz Ly

is the two point correlation function of the noise in the
frequency domain. Similar expressions can be derived for
the n point correlation functions from the linear mapping
(A8). Since the correlation functions of the noise are
pairwise decomposable, the correlation functions of v (1)
and thus x () are also pairwise decomposable, and these
variables are therefore Gaussian random.

APPENDIX B

Let x(t) be a Gaussian random variable with zero
mean and a two point correlation function

(x(t;)x(t,))=Golt;—t,) , (B1)

where the average { ) is taken over the functional proba-
bility distribution similar to (A3). The higher moments
of a Gaussian random process are pairwise decomposable,
as in Eqs. (A4a) and (A4b). By rescaling the random vari-
able

x(r)—»y(t)=———‘/a%(_mxu) , (B2)
then
Go(t)—>G(1)= Golt) (B3)
G(0)
so that
(y()y(1))=G(0)=1. (B4)

If #,(y) is the nth Hermite polynomial derived from the
weight function exp(—y?2/2), then

yj'[( )= .7{n+1 y)+n7{,,_| (BS)

Multiplying both sides by #,,,(y(¢)) and taking the
average gives

(F 11y ())y (0)F,(y(0)))
=<7{,,,+1(y(t))7l,,+1(y(0))>
+nl{H 1y (O)H, _(y(0)) . (B6)

Using the integral form of #,(y) [25]

+o do

7‘[,,()2)=f_°o TE—;e—"z/z(y +io)", (B7)

the left-hand side of Eq. (B6) can be written as

@) +io 1"y 0)y(0)+io,]") . (B8)

Since correlation functions of the Gaussian random variable y (z) are pairwise decomposable, then

(y()+io ™y 0y (0)+io, ") =(m + 1){[y(t)+io,y (0 [y () +io, ][y (0)+ig,]")

+n{y0)y(O)+io,D{(y()+io,]" Ty (0)+ic,]" ") . (B9)
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Since and
(y(D+ioly(0))=(y(t)y(0))=G(r) (B10) hy=h,;,=0, (C3a)
and h21 = COS( 3¢) ’ (C3b)
(y(0)[y(0)+ic,])=(y(0)y(0))=1, (B11) hy=sin(3¢) . (C3c)
Eq. (B9) becomes 7,(t) and 7,(¢) are two Gaussian white noise sources with
(y () +ig "y 0y (0)+io,]") (ni(0)=0,
(C4)
=(m +1){(y(2)y(0)) (ni(t)m;(8,)) =N;8(t,—1,)
X{[y(t)+ia(]"[y(0)+io,]") where
+n{ly(D+io, ] 'y (0)+io," 1) (B12) N,=2k,T8, . (©5)
or The classical phase space probability distribution
(H 1y ())y (0)F,(y(0))) o(¢,J,t)=0(x,t) satisfies the Fokker-Planck equation
[19
=(m +1){y ()y (0)){H,, (y (t))F£,(y(0))) ]
2
1 Hpy 119 (DI, (9 (O)) . B3 Lotn=1-3 k413 L b, lotxn,
Subtracting Eq. (B6) from (B13) yields a Fa «p Xa%p
(H oy 9 (NFHy 41(p () (c6)
=(m + 1y (1)y (0))(H,,(y (NH,(y(0)) . (Bl4)  Where
Repeated application of the relation (B14) gives the result k,=g, +% s 2}; ai hoN; (C7)
(H(p (NFH,(y(0))=m13,,(y(1)p(0))*  (B15) Bi "B
or and
(Hay O, (0)) [ (i) |” B16 bag=hqihgN . (C8)
(F#,(y(0))F,(y(0))) (y(0)y(0)) It can be shown that
Since the regular Hermite polynomials H,(y) are related k,=g,, (C9a)
to #,(y) through
k,=g; » (C9b)
=9—n/2 x_
H,(y)=2 H, vAE (B17) and
the relation between the normalized correlation functions by, =b;=b, =0, (C10a)
of the nth and first rank Hermite polynomials of a Gauss-
ian random variable is by =2yok, T . (C10b)

C,()=[C,()]" . (B18)

APPENDIX C

The nonlinear Langevin equation in the white noise
and local damping limits (3.20) can be rewritten [26] as

2(D=go(x)+ 3 ho(x)m;(0) (1)

where x,=¢, x,=J,

81 % ) (C2a)

_ aU,(¢) . J
82 3¢ 7’01 ’

(C2b)

With these relations, the Fokker-Planck equation for the
rotor in the limit of white noise and no memory becomes

) ] g3 93U 5 3 J
at"w’”_[ 136 36 36 s
al
+yvoky T——5 [0(d,J,1) . (C11)
APPENDIX D

In this appendix, we present more explicit expressions
for the collision operator (4.18). Since the Poisson brack-
et is a linear differential operator, it can be expanded as
in (4.2) to obtain



4900 YUHONG ZHANG AND T. E. BULL 49

{Him’pba(s)}pb: { Ac(¢)Bc(qc)+ As(¢)Bs(qs )stU(S)}pb
= A.($)a(s){B.(q.),pp}5p +Bc(gc)py { Ac(8),0(5)}5,
+ A (@)o(s){B,(q;),pp} s T B (g5 )pp AS(d)),a(S)}ﬁ,, , (D1

where {, };;, {, } 5, 2nd {, ];5,, are the Poisson brackets for the variables (¢.,,k,, ), (q;,,k,, ), and (¢,J) alone, defined in
(4.3a)-(4.3c). We also denote

Bc(qc )= 2 Cchcn ’ (D2a)
By(g,)= 3 Cy 4y, - (D2b)

The collision operator (4.18) can be expanded to

Ro(g0,0=[" dsla,(t =) A()e" " 4.(8),0(8,7,91%, 1%,
T 4,(),0(6,0,9)1,

tag(t =) A()e A (B (6,d,9))Y,

Fa,(t—s)A (e

(t —s)i.

tat—s) A, ()" " 4 ($)0(4,d,5)

(t—s)L,

+ay,(t—s){ 4,(d),e {A(6),0(,0,9)}% 1%

(t =)L,

+a,,(t —s)A,(d)e {A,(8),0(8,,9)1%,

Fag(t —){ Ay(dhe" " 4, ($)0(8,d,5))%,
taglt—s) 4,8 4, ($)o(b,0,5)] (D3)
f
where A (8)=a4(s)=0, (D5a)
a.(s)= [ db B,(g,)e " B.(g.)p, , (Déa) er(s)=2ky Ty c(s) (D3)
A ) =2y (5), (D50)
a.(5)= [db(B,(q.)e" " B.(g.)py )5y (D4b) g
aH(s)=au,(s)=0, (D6a)
()= [ db B.(g,)e" ™ (B.(g. )05 )5 (Déc) u1(5) =2k, Ty (5) | (Déb)
aou(s)= [ db(B,(g,)e ™ {B,(g.)ps )5 ) (D4d) GAIZ2 G poer

where y(s) and y,(s) are two damping kernels defined in
and a;(s), ay(s), as(s), and ag(s) are given by analo-  (3.5a) and (3.5b). Substituting (D5) and (D6) into (D3)
gous formulas. It is straightforward to show that yields

J

(t—s)iL,

Ro(g,d,0=2" dsik,Ty.(1—5){A4,()e (A,(4),0(6,7,5)}%,}%,

d?’c(t —s) (t—s)tf:a
d=s) {A.(d)e

+k, Ty (t —s)| A,(¢),e"

4.($)0(8,7,5))4,

—s)if
! )“{As(¢),a(¢,J,S)}$b])’fb

dy(t—s)

—s)iL
Ty A T Ao, | D7)

Integrating the second term in (D7) by parts gives
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d (t )ik
2f" as Z(‘t (g * 4,($)0($,1,9)}8,
=—2y.(0){ 4.(¢), Ac(¢)0(¢,J,t)]$b +2y (t+0){ A.(d), A (P)o(d,], — )}fb
. [
+2[" dsy (t—s5){4,(4), %e“—wﬁ"Ac(qS)a(qS,J,s) . (D8)
—w b
Equation (D8) can be simplified by noting that
Yelt+0)=0, (D9)
since we assume the memory function decays to zero at infinite time and
{A4.(¢), 4.($)o($,J,0)}8,={1[ A ($)1%0(s,J,0)}%, . (D10)
Also
g;e('_mt"Ac(¢)a(¢,J,s)=e(’_s)i£" 491 L5(4,0,5)—iL, 4($)0(8,J,5)
~e T A ($)L,0(¢,J,5)—iL, A.($)a(¢,,5)] (D11)
(t—s)itﬂ aHa aAc(¢)
= 37 26 olg,J,s),
where we have used the approximation
%a(«#,],s)zifaa(zﬁ,.f,s) : (D12)
since the collision opcrator R is already second order in C., and C,,. By substituting (D9)-(D11) into (D8), we obtain
d‘}’c (¢ —sif,
2" ds—e—- T {A ()e A ($)o(,d,5)}%
(—suf, OH, dA($) ?
~{—y.(0) 4.($)1%0(,J,1)}% +2f ds Yt —s)14.(d),e a o(d,J,s) . (D13)
oJ 3 b

There is an analogous equation for the fourth term in (D7). By using these equations, the collision kernel becomes
Ro(¢,,t)={—7.(0)[ 4.($)%0(,J,0}% + [ —7,(0)] 4,($)1%,0(8,J,)}%,

[

t (t— S)IE aH 04 (¢)
+2f_wdsyc(t s)[AC(ci)) Y 2 ——o(,J,s) }pb
¢

t (l—s)ifa aHa aAs(¢)
+2f_wds7/,(t s)[As(rﬁ),e YRR o(¢,J,s) Lb

—s)if
+2k, T [* dsy (1 =5){A ()¢ " [ 4.(8),0(8,7,9))8 1%,
12k, T [* dsy,(t =) (@) " Fo 4, (8),0(8,0,9)1%, 18, - (D14)
r
APPENDIX E It is obvious that
From the definition (4.21), we have F($,J,0)=1, (E2a)
F($,J,t)= cos(3¢ ye ' La cos(3¢)+sin(3¢)e iLa gin( 34) . F(¢,J,0)=0 . (E2b)
(Ela) It can be shown that
We also define 8
_ ; ; H,,F (E3a)
F($,J,1)= cos(3¢)e "osin(3¢) —sin(3¢)e " cos(34) . aF = Ho Flp 357 2

(E1b) and
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aF—HF¢ 3a F E3b
at =Ha, Flp aJ (E3b)

Combining (E3a) and (E3b) gives

a

- - 0H, ~
%(F+iF)={H,,,(F+iF)}Z’b—3i (F+iF). (E4)

aJ

If it is a free rotor [see Eq. (4.22)], then F +iF does not
depend on ¢, so

{H,,(F +iF)}%,=0 (ES)

and

-a~(F+iF)=—i31(F+iF). (E6)
ot I

The solution to Eq. (E6) with the initial conditions (E2a)
and (E2b) is

F+l-Fv___e*i3(J/I)t (E7)

or

F(¢,J,t)= cos

J
3—t
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